Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells.
نویسندگان
چکیده
Rutaecarpine (Rut) has been shown to induce hypotension and vasorelaxation. In vitro studies indicated that the vasorelaxant effect of Rut was largely endothelium-dependent. We previously reported that Rut increased intracellular Ca2+ concentrations ([Ca2+]i) in cultured rat endothelial cells (ECs) and decreased [Ca2+]i in cultured rat vascular smooth muscle (VSMCs) cells. The present results showed that the hypotensive effect of Rut (10-100 microgram/kg i.v.) was significantly blocked by the nitric oxide synthase inhibitor Nomega-nitro-L-arginine. In aortic rings, Rut (0. 1-3.0 microM)-induced vasorelaxation was inhibited by Nomega-nitro-L-arginine and hydroquinone but not by antagonists of the various K+ channels, 4-aminopyridine, apamin, charybdotoxin, or glibenclamide. Rut (0.1 and 1.0 microM) inhibited the norepinephrine-induced contraction generated by Ca2+ influx and at 1.0 microM increased cyclic GMP (cGMP) production in endothelium-intact rings and to a lesser extent in endothelium-denuded rings. In whole-cell patch-clamp recording, nonvoltage-dependent Ca2+ channels were recorded in ECs and Rut (0.1, 1.0 microM) elicited an opening of such channels. However, in VSMCs, Rut (10.0 microM) inhibited significantly the L-type voltage-dependent Ca2+ channels. In ECs cells, Rut (1.0, 10.0 microM) increased nitric oxide release in a Ca2+-dependent manner. Taken together, the results suggested that Rut lowered blood pressure by mainly activating the endothelial Ca2+-nitric oxide-cGMP pathway to reduce smooth muscle tone. Although the contribution seemed to be minor in nature, inhibition of contractile response in VSMCs, as evidenced by inhibition of Ca2+ currents, was also involved. Potassium channels, on the other hand, had no apparent roles.
منابع مشابه
Progress in the studies on rutaecarpine.
Rutaecarpine is an indolopyridoquinazolinone alkaloid isolated from Evodia rutaecarpa and related herbs, which has shown a variety of intriguing biological properties such as anti-thrombotic, anticancer, anti-inflammatory and analgesic, anti-obesity and thermoregulatory, vasorelaxing activity, as well as effects on the cardiovascular and endocrine systems. Recent progress in the studies on the ...
متن کاملDihydropyridine Calcium Antagonist-Induced Modulation of Endothelial Function: A Review
The vasorelaxing properties of calcium antagonists have been well established in both experimental and clinical settings during the past three decades. Fleckenstein et al. (13) first postulated a blockade of calcium channels by verapamil, a calcium antagonist. The first therapeutically useful dihydropyridine (DHP), nifedipine, was synthesized by Bossert and Vater (9), and formed the basis for a...
متن کاملThe alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes.
Rutaecarpine, evodiamine, and dehydroevodiamine are quinazolinocarboline alkaloids isolated from a traditional Chinese medicine, Evodia rutaecarpa. The in vitro effects of these alkaloids on cytochrome P450 (P450)-catalyzed oxidations were studied using mouse and human liver microsomes. Among these alkaloids, rutaecarpine showed the most potent and selective inhibitory effect on CYP1A-catalyzed...
متن کاملInflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells
The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...
متن کاملOxidative metabolism of the alkaloid rutaecarpine by human cytochrome P450.
Rutaecarpine is the main active alkaloid of the herbal medicine, Evodia rutaecarpa. To identify the major human cytochrome P450 (P450) participating in rutaecarpine oxidative metabolism, human liver microsomes and bacteria-expressed recombinant human P450 were studied. In liver microsomes, rutaecarpine was oxidized to 10-, 11-, 12-, and 3-hydroxyrutaecarpine. Microsomal 10- and 3-hydroxylation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 289 3 شماره
صفحات -
تاریخ انتشار 1999